If 4 cos2 x° – 1 = 0 and 0 ≤ x ≤ 90, find
(i) x
(ii) sin2 x° + cos2 x°
(iii) cos2 x° – sin2 x°
Answer :
4 cos2 x° – 1 = 0
⇒ 4cos2 x° = 1
cos2 x° = ¼
⇒ cos x° = ± √1/4
⇒ cos x° = + √1/4 [0 ≤ x ≤ 90°, then cos x° is positive]
⇒ cos x° = ½
cos 60° = ½
cos x° = cos 60°
x = 60
(ii) sin2 x° + cos2 x° = sin2 60° + cos2 60°
= (√3/2)2 + (1/2)2
= ¾ + ¼
= (3 + 1)/4
= 4/4
= 1
Hence, sin2 x° + cos2 x° = 1.
(iii) cos2 x° – sin2 x° = cos2 60° – sin2 60°
= (1/2)2 – (√3/2)2
= ¼ – (√3/2 × √3/2)
= ¼ – ¾
= (1 – 3)/4
= -2/4
= – ½
Hence, cos2 x° – sin2 x° = – ½.
More Solutions:
- If sin x + cos y = 1, x = 30°
- Find the values of A and B.
- Find the lengths of the diagonals of the rhombus.
- Find the lengths of the sides BC and AB.
- Find the distance of the man from the building.
- Find the length of the altitude AD.
- Cos 18°/sin 72°
- cot 40°/tan 50° – ½ (cos 35°/sin 55°)
- sin 62° – cos 28°
- cos2 26° + cos 64° sin 26° + tan 36°/ cot 54°