If a = 1/ (a – 5), find
(i) a – 1/a
(ii) a + 1/a
(iii) a2 – 1/a2.
Answer :
It is given that
a = 1/ (a – 5)
We can write it as
a2 – 5a – 1 = 0
Now divide each term by a
a – 5 – 1/a = 0
So we get
a – 1/a = 5
(i) a – 1/a = 5
(ii) We know that
(a + 1/a)2 = (a – 1/a)2 + 4
Substituting the values
(a + 1/a)2 = 52 + 4
So we get
(a + 1/a)2 = 25 + 4 = 29
a + 1/a = ± √29
(iii) We know that
a2 – 1/a2 = (a + 1/a) (a – 1/a)
Substituting the values
a2 – 1/a2 = ± √29 × 5
a2 – 1/a2 = ± 5√29
More Solutions:
- If (x + 1/x)2 = 3, find x3 + 1/x3.
- If x = 5 – 2√6, find the value of √x + 1/√x.
- If a + b + c = 12 and ab + bc + ca = 22, find a2 + b2 + c2.
- If a + b + c = 12 and a2 + b2 + c2 = 100, find ab + bc + ca.
- If a2 + b2 + c2 = 125 and ab + bc + ca = 50, find a + b + c.
- If a2 + b2 + c2 = 125 and ab + bc + ca = 50, find a + b + c.
- Find the value of ab – bc – ca.
- If a – b = 7 and a2 + b2 = 85, then find the value of a3 – b3.
- Find the product of x and y.
- Find the sum of their cubes.