If a2 – 3a + 1 = 0, find
(i) a2 + 1/a2
(ii) a3 + 1/a3.
Answer :
It is given that
a2 – 3a + 1 = 0
By dividing each term by a
a + 1/a = 3
(i) We know that
(a + 1/a)2 = a2 + 1/a2 + 2
It can be written as
a2 + 1/a2 = (a + 1/a)2 – 2
Substituting the values
= 32 – 2
= 9 – 2
= 7
(ii) We know that
(a + 1/a)3 = a3 + 1/a3 + 3 (a + 1/a)
It can be written as
a3 + 1/a3 = (a + 1/a)3 – 3 (a + 1/a)
Substituting the values
= 33 – 3 (3)
= 27 – 9
= 18
More Solutions:
- If (x + 1/x)2 = 3, find x3 + 1/x3.
- If x = 5 – 2√6, find the value of √x + 1/√x.
- If a + b + c = 12 and ab + bc + ca = 22, find a2 + b2 + c2.
- If a + b + c = 12 and a2 + b2 + c2 = 100, find ab + bc + ca.
- If a2 + b2 + c2 = 125 and ab + bc + ca = 50, find a + b + c.
- If a2 + b2 + c2 = 125 and ab + bc + ca = 50, find a + b + c.
- Find the value of ab – bc – ca.
- If a – b = 7 and a2 + b2 = 85, then find the value of a3 – b3.
- Find the product of x and y.
- Find the sum of their cubes.