**If a**^{2} + 4a + x = (a + 2)^{2}, find the value of x.

^{2}+ 4a + x = (a + 2)

^{2}, find the value of x.

**Answer :**

It is given that

a^{2} + 4a + x = (a + 2)^{2}

By expanding using formula

a^{2} + 4a + x = a^{2} + 2^{2} + 2 × a × 2

By further calculation

a^{2} + 4a + x = a^{2} + 4 + 4a

So we get

x = a^{2} + 4 + 4a – a^{2} – 4a

x = 4

**More Solutions:**

- Without actually calculating the cubes, find the values of:
- Using suitable identity, find the value of:
- If x – y = 8 and xy = 5, find x2 + y2.
- If x + y = 10 and xy = 21, find 2 (x2 + y2).
- If 2a + 3b = 7 and ab = 2, find 4a2 + 9b2.
- Find the value of 9×2 + 16y2.
- Find the value of 2×2 + 2y2.
- If a2 + b2 = 13 and ab = 6, find
- If a + b = 4 and ab = -12, find
- If p – q = 9 and pq = 36, evaluate