(a) In ..ABC, A = 90°. If AB 7 cm and BC- AC 1 cm, find :
(1) sin C
(i) tan B
(b) In …PQR,Q = 90°. If PQ = 40 cm and PR + QR = 50 cm, find :
(1) sin P
(ii) cos P
(ti) tan R
Answer :
(a) In right ∆ABC
∠A = 90°
AB = 7 cm
BC – AC = 1 cm
⇒ BC = 1 + AC
BC2 = AB2 + AC2
Substituting the value of BC
(1 + AC)2 = AB2 + AC2
⇒ 1 + AC2 + 2AC = 72 + AC2
1 + AC2 + 2AC = 49 AC2
⇒ 2AC = 49 – 1 – 48
AC = 48/2 = 24 cm
Here,
BC = 1 + AC
BC = 1 + 24 = 25 cm
(i) sin C = AB/BC = 7/25
(ii) tan B = AC/AB = 24/7
(b) In right ∆PQR
∠Q = 90°
PQ = 40 cm
⇒ PQ + QR = 50 cm
We can write it as
PQ = 50 – QR
PR2 = PQ2 + QR2
⇒ (50 – QR)2 = (40)2 + QR2
2500 + QR2 – 100QR = 1600 + QR2
So we get
2500 – 1600 = 100QR
⇒ 100QR = 900
QR = 900/100 = 9
We get
PR = 50 – 9 = 41
(i) sin P = QR/PR = 9/41
(ii) cos P = PQ/PR = 40/41
(iii) tan R = PQ/QR = 40/9
More Solutions:
- Find the value of cos θ + tan θ.
- If tan = 4/3, find the value of sin θ + cos θ.
- If cosec = √5 and θ is less than 90°.
- Find cos θ + sin θ in terms of p and q.
- Find the value of sec θ + cosec θ.
- Given A is an acute angle and 13 sin A = 5, Evaluate:
- Given A is an acute angle and cosec A = √2
- If AC = 8 cm and BD = 6 cm, find sin ∠OCD.
- Find the value of (cos θ + sin θ)/(cos θ – sin θ).
- Given 5 cos A – 12 sin A = 0.