(a) From the figure (1) given below, find the values of:
(i) 2 sin y- cos y
(ii)2 sinx-cos x
(iii) 1- sin x + cos y
(iv) 2 cos x-3 sin y +4 tan z.
(b) In the figure (2) given below, ∆ABC is right-angled at B. If AB = y units, BC = 3 units and CA = 5 units, find
(i) sin x°
(ii) y.
Answer :
(a) In a right angled ∆BCD,
BC2 = BD2 + CD2
BC2 = 92 + 122
BC2 = 81 + 144 = 225
⇒ BC2 = 152
⇒ BC = 15
In a right angled ∆ABC,
AC2 = AB2 + BC2
AB2 = AC2 – BC2
AB2 = 252 – 152
AB2 = 625 – 225 = 400
So we get
AB2 = 202
AB = 20
(i)
In right angled ∆BCD
sin y = perpendicular/ hypotenuse
⇒ sin y = BD/ BC
sin y = 9/15 = 3/5
In right angled ∆BCD
cos y = base/hypotenuse
⇒ cos y = CD/BC
cos y = 12/15 = 4/5
2sin y – cos y = 2× 3/5 – 4/5
= 6/5 – 4/5
= 2/5
Therefore, 2 sin y – cos y = 2/5
(ii) In right angled ∆ABC
sin x = perpendicular/ hypotenuse
sin x = BC/AC
sin x = 15/25 = 3/5
In right angled ∆ABC
cos x = base/hypotenuse
⇒ cos x = AB/AC
cos x = 20/25 = 4/5
2 sin x – cos x = 2× 3/5 – 4/5
= 6/5 – 4/5
= 2/5
Therefore, 2 sin x – cos x = 2/5.
(iii) In right angled ∆ABC
sin x = perpendicular/hypotenuse
⇒ sin x = BC/AC
sin x = 12/25 = 3/5
In right angled ∆BCD
cos y = base/hypotenuse
⇒ cos y = CD/BC
cos y = 12/15 = 4/5
1 – sin x + cos y
= 1 – 3/5 + 4/5
= (5 – 3 + 4)/ 5
So we get
= (9 – 3)/ 5
= 6/5
Therefore, 1 – sin x + cos y = 6/5.
(iv) In right angled ∆BCD
cos x = base/hypotenuse
⇒ cos x = AB/AC
cos x = 20/25 = 4/5
In right angled ∆BCD
sin y = perpendicular/hypotenuse
⇒ sin y = BD/BC
sin y = 9/15 = 3/5
In right angled ∆ABC
tan x = perpendicular/base
⇒ tan x = BC/AB
tan x = 15/20 = ¾
Here,
2 cos x – 3 sin y + 4 tan x = (2× 4/5) – (3× 3/5) + (4× ¾)
= 8/5 – 9/5 3/1
Taking LCM
= (8 – 9 + 15)/5
= (23 – 9)/ 5
= 14/5
(b) AB = y units, BC = 3 units, CA = 5 units
(i) In right angled ∆ABC
sin x = perpendicular/hypotenuse
⇒ sin x = BC/AC
sin x = 3/5
(ii) In right angled ∆ABC
AC2 = BC2 + AB2
We can write it as
AB2 = AC2 – BC2
AB2 = 52 – 32
AB2 = 25 – 9 = 16
So we get
AB2 = 42
⇒ AB = 4
y = 4 units
Hence,
y = 4 units.
More Solutions:
- Find the value of cos θ + tan θ.
- If tan = 4/3, find the value of sin θ + cos θ.
- If cosec = √5 and θ is less than 90°.
- Find cos θ + sin θ in terms of p and q.
- Find the value of sec θ + cosec θ.
- Given A is an acute angle and 13 sin A = 5, Evaluate:
- Given A is an acute angle and cosec A = √2
- If AC = 8 cm and BD = 6 cm, find sin ∠OCD.
- Find the value of (cos θ + sin θ)/(cos θ – sin θ).
- Given 5 cos A – 12 sin A = 0.