**The diagonals AC and BD of a rhombus ABCD meet at O. If AC = 8 cm and BD = 6 cm, find sin ∠OCD.**

**Answer :**

Diagonals AC and BD of rhombus ABCD meet at O

AC = 8 cm and BD = 6 cm

O is the mid point of AC

AO = OC = AC/2 = 8/2 = 4 cm

O is the mid point of BD

BO = OD = BD/2 = 6/2 = 3 cm

In right angled ∆COD

CD^{2} = OC^{2} + OD^{2}

CD^{2} = 4^{2} + 3^{2}

CD^{2} = 16 + 9 = 25

⇒ CD^{2} = 5^{2}

⇒ CD = 5 cm

In right angled ∆COD

sin ∠OCD = perpendicular/ hypotenuse

sin ∠OCD = OD/CD = 3/5

**More Solutions:**

- If tan θ = p/q
- If 3 cot θ = 4, find the value of (5 sinθ – 3 cosθ)/(5 sinθ + 3 cosθ).
- If 5 cosθ – 12 sinθ = 0.
- If 5 sin θ = 3
- Find the value of 2 tan2 θ + sin2 θ – 1.
- Prove the following: cos θ tan θ = sin θ
- Prove that sin A cos B + cos A sin B = 1.
- ∆ABC is right-angled at B
- Its diagonal AC = 15 cm and ∠ACD = α. If cot α = 3/2.
- Using the measurements given in the figure