If cosec = √5 and θ is less than 90°, find the value of cot θ – cos θ.
Answer :
Given cosec θ = √5/1 = OP/PM
OP = √5 and PM = 1
Now OP2 = OM2 + PM2
(√5)2 = OM2 + 12
⇒ 5 = OM2 + 1
⇒ OM2 = 5 – 1
⇒ OM2 = 4
⇒ OM = 2
Now cot θ = OM/PM
= 2/1
= 2
cos θ = OM/OP
= 2/√5
cot θ – cos θ = 2 – (2/√5)
= 2 (√5 – 1)/ √5
More Solutions:
- If tan θ = p/q
- If 3 cot θ = 4, find the value of (5 sinθ – 3 cosθ)/(5 sinθ + 3 cosθ).
- If 5 cosθ – 12 sinθ = 0.
- If 5 sin θ = 3
- Find the value of 2 tan2 θ + sin2 θ – 1.
- Prove the following: cos θ tan θ = sin θ
- Prove that sin A cos B + cos A sin B = 1.
- ∆ABC is right-angled at B
- Its diagonal AC = 15 cm and ∠ACD = α. If cot α = 3/2.
- Using the measurements given in the figure