If sec θ – tan θ = k, then the value of sec θ + tan θ is
(a)
(b) 1 – k
(c) 1 + k
(d)
Solution:
sec θ – tan θ = k
More Solutions:
- Solve: sin2 θ + cos4 θ = cos2 θ + sin4 θ
- Solve: sec4 A (1 – sin4 A) – 2 tan2 A = 1
- Solve: (sec A – tan A)2 (1 + sin A) = 1 – sin A.
- Solve: (sec A – cosec A) (1 + tan A + cot A) = tan A sec A – cot A cosec A
- Solve: (sinA + cosA)2 + (sinA – cosA)2/sin2A – cos2A.
- Solve: 2 (sin6 θ + cos6 θ) – 3 (sin4 θ + cos4 θ) + 1 = θ