If sin 3x = 1 and 0° ≤ 3x ≤ 90°, find the values of
(i) sin x
(ii) cos 2x
(iii) tan2 x – sec2 x.
Answer :
sin 3x = 1
sin 90° = 1
sin 3x = sin 90°
3x = 90
⇒ x = 90/3
⇒ x = 30°
(i) sin x = sin 30° = 1/2
(ii) cos 2x = cos 2 × 30 = cos 60° = 1/2
(iii) tan2 x – sec2 x = tan2 30° – sec2 30°
= (1/√3)2 – (2/√3)2
= 1/3 – 4/3
= (1 – 4)/3
= – 3/3
= -1
Hence, tan2 x – sec2 x = – 1.
More Solutions:
- If sin x + cos y = 1, x = 30°
- Find the values of A and B.
- Find the lengths of the diagonals of the rhombus.
- Find the lengths of the sides BC and AB.
- Find the distance of the man from the building.
- Find the length of the altitude AD.
- Cos 18°/sin 72°
- cot 40°/tan 50° – ½ (cos 35°/sin 55°)
- sin 62° – cos 28°
- cos2 26° + cos 64° sin 26° + tan 36°/ cot 54°