If tan = 4/3, find the value of sin θ + cos θ (both sin θ and cos θ are positive).
Answer :
Let ∆ABC be a right angled
∠ACB = θ
Given that, tan θ = 4/3
(AB/BC = 4/3)
tan θ = 4/3
(AB/BC = 4/3)
Let AB = 4x,
then BC = 3x
In right angled ∆ABC
AC2 = AB2 + BC2
⇒ AC2 = AB2 + BC2
⇒ AC2 = AB2 + BC2
⇒ AC2 = AB2 + BC2
⇒ (AC2 = (4x)2 + (3x)2
⇒ AC2 = 16x2 + 9x2
⇒ AC2 = 25x2
⇒ AC2 = (5x)2
⇒ AC = 5x
Sin θ = perpendicular/Hypotenuse
= AB/AC
= 4x/5x
= 4/5
cos θ = Base/Hypotenuse
= BC/AC
= 3x/5x
= 3/5
sin θ + cos θ
= 4/5 + 3/5
= (4 + 3)/5
= 7/5
Hence,
Sin θ + cos θ = 7/5 = 1 2/5
More Solutions:
- If tan θ = p/q
- If 3 cot θ = 4, find the value of (5 sinθ – 3 cosθ)/(5 sinθ + 3 cosθ).
- If 5 cosθ – 12 sinθ = 0.
- If 5 sin θ = 3
- Find the value of 2 tan2 θ + sin2 θ – 1.
- Prove the following: cos θ tan θ = sin θ
- Prove that sin A cos B + cos A sin B = 1.
- ∆ABC is right-angled at B
- Its diagonal AC = 15 cm and ∠ACD = α. If cot α = 3/2.
- Using the measurements given in the figure