**If tan A = √3, then the value of cosec A is**

(a) 1/2

(b) 2

(c) 1/√2

(d) √3/2

**Answer :**

tan A=√3 **——-1**

But, tan 60°=√3 **———-2**

From **1**** **and **2**, A=60°

cosec A=cosec 60°

=2/√3

**More Solutions:**

- Taking A = 30°, verify that
- If A = 45° and B = 30°
- Taking A = 60° and B = 30°, verify that
- Find the value of sin θ + √3 cos θ – 2 tan2 θ.
- Solve the following equations for θ:
- If tan (A + B) = √3 and tan (A – B) = 1
- Without using trigonometrical tables.
- Prove that:
- Solve the following equations:
- Find the value of θ if