If tan θ = p/q

If tan θ = p/q, find the value of (p sin θ – q cos θ)/ (p sin θ + q cos θ).

Answer :

tan θ = p/q

Consider ∆ABC be right angled at B and ∠BCA = θ

tan θ = BC/AB = p/q

BC = px then AB = qx

Trigonometric Ratios Class 9 ICSE ML Aggarwal img 22

AC2 = BC2 + AB2

AC2 = (px)2 + (qx)2

⇒ AC2 = p2x2 + q2x2

⇒ AC2 = x2 (p2 + q2)

AC = √x2 (p2 + q2)

⇒ AC = x(√p2 + q2)

In right angled ∆ABC

sin θ = perpendicular/hypotenuse

⇒ sin θ = BC/AC

sin θ = px/x(√p2 + q2)

sin θ = p/(√p2 + q2)

In right angled ∆ABC

cos θ = base/hypotenuse

⇒ cos θ = AB/AC

cos θ = qx/x(√p2 + q2)

cos θ = q/(√p2 + q2)

Trigonometric Ratios Class 9 ICSE ML Aggarwal img 23

More Solutions:

Leave a Comment