If the coordinates of the vertex A of a square ABCD are (3, -2).

If the coordinates of the vertex A of a square ABCD are (3, -2) and the equation of diagonal BD is 3x – 7y + 6 = 0, find the equation of the diagonal AC. Also, find the coordinates of the center of the square.

Solution:

ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 12 Equation of a Straight Line Chapter Test

⇒ y − y1​= m(x − x1​)

⇒ y−(−2)= − \frac{7}{3} ​(x−3)

⇒ 3(y + 2) =−7(x−3)

⇒ 3y + 6 =−7x + 21

⇒ 7x + 3y = 15

Now we will find the coordinates of O, the points of intersection of AC and BD

⇒ 3x – 7y = -6 ….(i)
⇒ 7x + 3y = 15 ….(ii)

Multiplying (i) by 3 and (ii) by 7, we get,

⇒ 9x – 21y = -18 ….(iii)
⇒ 49x + 21y = 105 …(iv)

Adding (iii) and (iv) we get,

⇒ 9x + 49x – 21y + 21y = -18 + 105

⇒ 58x = 87

⇒ x = \frac{87}{58}=\frac{3}{2}.

⇒ 3 ×  \frac{3}{2} ​− 7y=−6

 \frac{9}{2}​−7y=−6

 \frac{9}{2}​ + 6 = 7y

\frac{9+12}{2} = 7y

\frac{21}{2} = 7y

⇒ y = \frac{3}{2}

Hence, the equation of AC is 7x + 3y – 15 = 0 and coordinates of the center are \left(\frac{3}{2}, \frac{3}{2}\right)

More Solutions:

Leave a Comment