If θ = 30°, verify that
(i) sin 2θ = 2 sin θ cos θ
(ii) cos 2θ = 2 cos2 θ – 1
(iii) sin 3θ = 3 sin θ – 4 sin3 θ
(iv) cos 3θ = 4 cos3 θ – 3 cos θ.
Answer :
θ = 30°
(i) sin 2θ = 2 sin θ cos θ
LHS = sin 2θ
= sin 2 × 30°
= sin 60°
= √3/2
RHS = 2 sin θ cos θ
= 2 sin 30° cos 30°
= 2 × ½ × √3/2
= 1 × √3/2
= √3/2
Hence, LHS = RHS.
(ii) cos 2θ = 2 cos2θ – 1
LHS = cos 2θ
= cos 2 × 30°
= cos 60°
= ½
RHS = 2 cos2 θ – 1
= 2 cos2 30° – 1
= 2 (√3/2)2 – 1
= 2 × ¾ – 1
= 3/2 – 1
= (3 – 2)/2
= ½
Hence, LHS = RHS.
(iii) sin 3θ = 3 sin θ – 4 sin3 θ
Consider
LHS = sin 3θ
= sin 3 × 30°
= sin 90°
= 1
RHS = 3 sin θ – 4 sin3 θ
= 3 sin 30° – 4 sin3 30°
= (3×½) – 4×(1/2)3
= 3/2 – 4× 1/8
= 3/2 – ½
Taking LCM
= (3 – 1)/2
= 2/2
= 1
Hence, LHS = RHS.
(iv) cos 3θ = 4 cos3 θ – 3 cos θ
LHS = cos 3θ
= cos 3 × 30°
= cos 90°
= 0
RHS = 4 cos3 θ – 3 cos θ
= 4 cos3 30° – 3 cos 30°
= 4×(√3/2)3 – 3×(√3/2)
= 4× 3√3/8 – 3√3/2
= 3√3/2 – 3√3/2
= 0
Hence, LHS = RHS.
More Solutions:
- Show that sin (A + B) ≠ sin A + sin B.
- If A = 60° and B = 30°, verify that
- Find the value of θ.
- Find the value of 2 tan2 θ + sin2 θ – 1.
- From the adjoining figure, find
- If 3θ is an acute angle
- If tan 3x = sin 45° cos 45° + sin 30
- If 4 cos2 x° – 1 = 0 and 0 ≤ x ≤ 90, find
- If sin 3x = 1 and 0° ≤ 3x ≤ 90°
- Find cos 2θ, given that θ is acute.