If x + 1/x = 4, find the values of

If x + 1/x = 4, find the values of

(i) x2 + 1/x2

(ii) x4 + 1/x4

(iii) x3 + 1/x3

(iv) x – 1/x.

Answer :

(i) We know that

(x + 1/x)2 = x2 + 1/x2 + 2

It can be written as

x2 + 1/x2 = (x + 1/x)2 – 2

Substituting the values

= 42 – 2

= 16 – 2

= 14

(ii) We know that

(x2 + 1/x2)2 = x4 + 1/x4 + 2

It can be written as

x4 + 1/x4 = (x2 + 1/x2)2 – 2

Substituting the values

= 142 – 2

= 196 – 2

= 194

(iii) We know that

x3 + 1/x3 = (x + 1/x)3 – 3x (1/x) (x + 1/x)

It can be written as

(x + 1/x)3 – 3(x + 1/x) = 43 – 3 × 4

By further calculation

= 64 – 12

= 52

(iv) We know that

(x – 1/x)2 = x2 + 1/x2 – 2

Substituting the values

= 14 – 2

= 12

So we get

x – 1/x = ± 2√3

More Solutions:

Leave a Comment