If x – 1/x = 5, find the value of x4 + 1/x4.
Answer :
We know that
(x – 1/x)2 = x2 + 1/x2 – 2
It can be written as
x2 + 1/x2 = (x – 1/x)2 + 2
Substituting the values
x2 + 1/x2 = 52 + 2 = 27
Here
x4 + 1/x4 = (x2 + 1/x2)2 – 2
Substituting the values
x4 + 1/x4 = 272 – 2
So we get
= 729 – 2
= 727
More Solutions:
- Prove that x2 + 1/x2 = x3 + 1/x3 = x4 + 1/x4.
- If x – 2/x = 3, find the value of x3 – 8/x3.
- If a + 2b = 5, prove that a3 + 8b3 + 30ab = 125.
- If a + 1/a = p, prove that a3 + 1/a3 = p (p2 – 3).
- If x2 + 1/x2 = 27, find the value of x – 1/x.
- Find the value of 3×3 + 5x – 3/x3 – 5/x.
- If x2 + 1/25×2 = 8 3/5, find x + 1/5x.
- If x2 + 1/4×2 = 8, find x3 + 1/8×3.
- If a2 – 3a + 1 = 0, find
- If a = 1/ (a – 5), find