If x – 1/x = √5, find the values of
(i) x2 + 1/x2
(ii) x + 1/x
(iii) x3 + 1/x3
Answer :
(i) x2 + 1/x2 = (x – 1/x)2 + 2
Substituting the values
= (√5)2 + 2
= 5 + 2
= 7
(ii) (x + 1/x)2 = x2 + 1/x2 + 2
Substituting the values
= 7 + 2
= 9
Here
(x + 1/x)2 = 9
So we get
(x + 1/x) = ± √9 = ± 3
(iii) x3 + 1/x3 = (x + 1/x)3 – 3x (1/x) (x + 1/x)
Substituting the values
= (± 3)3 – 3 (± 3)
By further calculation
= (± 27) – (± 9)
= ± 18
More Solutions:
- Prove that x2 + 1/x2 = x3 + 1/x3 = x4 + 1/x4.
- If x – 2/x = 3, find the value of x3 – 8/x3.
- If a + 2b = 5, prove that a3 + 8b3 + 30ab = 125.
- If a + 1/a = p, prove that a3 + 1/a3 = p (p2 – 3).
- If x2 + 1/x2 = 27, find the value of x – 1/x.
- Find the value of 3×3 + 5x – 3/x3 – 5/x.
- If x2 + 1/25×2 = 8 3/5, find x + 1/5x.
- If x2 + 1/4×2 = 8, find x3 + 1/8×3.
- If a2 – 3a + 1 = 0, find
- If a = 1/ (a – 5), find