If x + y = 6 and x – y = 4, find

If x + y = 6 and x – y = 4, find

(i) x2 + y2

(ii) xy

Answer :

We know that

(x + y)2 – (x – y)2 = 4xy

Substituting the values

62 – 42 = 4xy

By further calculation

36 – 16 = 4xy

20 = 4xy

4xy = 20

So we get

xy = 20/4 = 5

(i) x2 + y2 = (x + y)2 – 2xy

Substituting the values

= 62 – 2 × 5

By further calculation

= 36 – 10

= 26

(ii) xy = 5

More Solutions:

Leave a Comment