In the given figure, AB and DE are perpendicular to BC.
(i) Prove that ∆ABC ~ ∆DEC
(ii) If AB = 6 cm: DE = 4 cm and AC = 15 cm, calculate CD.
(iii) Find the ratio of the area of ∆ABC: area of ∆DEC.
Solution:
More Solutions:
- In triangles ABC and DEF, ∠B = ∠E, ∠F = ∠C and AB = 3DE.
- The given figure, AB || DE. The length of CD is
- If ∆PQR ~ ∆ABC, PQ = 6 cm, AB = 8 cm and perimeter of ∆ABC is 36 cm.
- PQ || CA and all lengths are given in centimeters.
- The points on the sides AB and AC of a ∆ABC.
- If the areas of two similar triangles are in the ratio 4 : 9