Prove that 3 sin 0 – 4 sin3 0 = 1.

If 2 cos 0 = 3, prove that 3 sin 0 – 4 sin3 0 = 1.

Answer :

2 cos θ = √3

⇒ cos θ = √3/2

sin2 θ = 1 – cos2 θ

= 1 – (√3/2)2

= 1 – ¾

= ¼

sin θ = √ ¼ = ½

LHS = 3 sin θ – 4 sin3 θ

= sinθ (3 – 4sin2 θ)

= ½ [3 – (4 × ¼)]

= ½ (3 – 1)

= ½ × 2

= 1

= RHS

Hence proved.

More Solutions:

Leave a Comment