If 2 cos 0 = 3, prove that 3 sin 0 – 4 sin3 0 = 1.
Answer :
2 cos θ = √3
⇒ cos θ = √3/2
sin2 θ = 1 – cos2 θ
= 1 – (√3/2)2
= 1 – ¾
= ¼
sin θ = √ ¼ = ½
LHS = 3 sin θ – 4 sin3 θ
= sinθ (3 – 4sin2 θ)
= ½ [3 – (4 × ¼)]
= ½ (3 – 1)
= ½ × 2
= 1
= RHS
Hence proved.
More Solutions:
- Find the value of sin2 θ + cosec2 θ.
- Find the length of BD.
- Find the values of 7 sin 30° cos 60°
- Find the values of (sin245° + cos245°)/tan260°
- Find the values of (sin30°/cos245°) – 3tan30° + 5cos90°
- Prove That. cos2 30° + sin 30° + tan2 45° = 2 ¼
- If x = 30°, verify that tan 2x = 2tanx/ (1- tan2 x).
- Find the values of: Trigonometric Ratios
- If θ = 30°, verify that
- Find the ratio 2 sin 0: sin 2 0.