Prove that a3 + 8b3 + 27c3 = 18 abc

If a + 2b + 3c = 0, Prove that a3 + 8b3 + 27c3 = 18 abc

Answer :

Given:

a + 2b + 3c = 0, a + 2b = – 3c

Let us cube on both the sides, we get

(a + 2b)3 = (-3c)3

a3 + (2b)3 + 3(a) (2b) (a + 2b) = -27c3

a3 + 8b3 + 6ab (– 3c) = – 27c3

a3 + 8b3 – 18abc = -27c3

a3 + 8b3 + 27c3 = 18abc

Hence proved.

More Solutions:

Leave a Comment