Prove That. cos2 30° + sin 30° + tan2 45° = 2 ¼

Prove That.

(i) cos2 30° + sin 30° + tan2 45° = 2 ¼

(ii) 4 (sin4 30° + cos4 60°) – 3 (cos2 45° – sin2 90°) = 2

(iii) cos 60° = cos2 30° – sin2 30°.

Answer :

(i) cos2 30° + sin 30° + tan2 45° = 2 ¼

LHS = cos2 30° + sin 30° + tan2 45°

= (√3/2)2 + ½ + 12

= ¾ + ½ + 1

= (3 + 2 + 4)/4

= 9/4

= 2 ¼

= RHS

Hence, LHS = RHS.

(ii) 4 (sin4 30° + cos4 60°) – 3 (cos2 45° – sin2 90°) = 2

LHS = 4 (sin4 30° + cos4 60°) – 3 (cos2 45° – sin2 90°)

= 4[(½)4 + (½)4] – 3 [(1/√2)2 – 12]

= 4[½ × ½ × ½ × ½ + ½ × ½ × ½ × ½] – 3 [½ – 1]

= 4 [1/16 + 1/16] – 3 (- ½)

= 4[(1 + 1)/16] + 3/2

= (4 × 3)/16 + 3/2

= 8/16 + 3/2

= ½ + 3/2

= (1 + 3)/2

= 4/2

= 2

= RHS

Hence, LHS = RHS.

(iii) cos 60° = cos2 30° – sin2 30°

LHS = cos 60° = ½

RHS = cos2 30° – sin2 30°

= (√3/2)2 + (1/2)2

= ¾ – ¼

= (3 – 1)/4

= 2/4

= ½

= RHS

Hence, LHS = RHS.

More Solutions:

Leave a Comment