Prove That.
(i) cos2 30° + sin 30° + tan2 45° = 2 ¼
(ii) 4 (sin4 30° + cos4 60°) – 3 (cos2 45° – sin2 90°) = 2
(iii) cos 60° = cos2 30° – sin2 30°.
Answer :
(i) cos2 30° + sin 30° + tan2 45° = 2 ¼
LHS = cos2 30° + sin 30° + tan2 45°
= (√3/2)2 + ½ + 12
= ¾ + ½ + 1
= (3 + 2 + 4)/4
= 9/4
= 2 ¼
= RHS
Hence, LHS = RHS.
(ii) 4 (sin4 30° + cos4 60°) – 3 (cos2 45° – sin2 90°) = 2
LHS = 4 (sin4 30° + cos4 60°) – 3 (cos2 45° – sin2 90°)
= 4[(½)4 + (½)4] – 3 [(1/√2)2 – 12]
= 4[½ × ½ × ½ × ½ + ½ × ½ × ½ × ½] – 3 [½ – 1]
= 4 [1/16 + 1/16] – 3 (- ½)
= 4[(1 + 1)/16] + 3/2
= (4 × 3)/16 + 3/2
= 8/16 + 3/2
= ½ + 3/2
= (1 + 3)/2
= 4/2
= 2
= RHS
Hence, LHS = RHS.
(iii) cos 60° = cos2 30° – sin2 30°
LHS = cos 60° = ½
RHS = cos2 30° – sin2 30°
= (√3/2)2 + (1/2)2
= ¾ – ¼
= (3 – 1)/4
= 2/4
= ½
= RHS
Hence, LHS = RHS.
More Solutions:
- Show that sin (A + B) ≠ sin A + sin B.
- If A = 60° and B = 30°, verify that
- Find the value of θ.
- Find the value of 2 tan2 θ + sin2 θ – 1.
- From the adjoining figure, find
- If 3θ is an acute angle
- If tan 3x = sin 45° cos 45° + sin 30
- If 4 cos2 x° – 1 = 0 and 0 ≤ x ≤ 90, find
- If sin 3x = 1 and 0° ≤ 3x ≤ 90°
- Find cos 2θ, given that θ is acute.