Prove that, √3 is an irrational number. Hence, show that 2/5×√3 is an irrational number.
Solution:
Let us consider √3 be a rational number, then
√3 = p/q, where ‘p’ and ‘q’ are integers, q ≠ 0 and p, q have no common factors (except 1).
So,
3 = p2 / q2
p2 = 3q2 …. (1)
As we know, ‘3’ divides 3q2, so ‘3’ divides p2 as well. Hence, ‘3’ is prime.
So 3 divides p
Now, let p = 3k, where ‘k’ is an integer
Square on both sides, we get
p2 = 9k2
3q2 = 9k2 [Since, p2 = 3q2, from equation (1)]
q2 = 3k2
As we know, ‘3’ divides 3k2, so ‘3’ divides q2 as well. But ‘3’ is prime.
So 3 divides q
Thus, p and q have a common factor 3. This statement contradicts that ‘p’ and ‘q’ has no common factors (except 1).
We can say that, √3 is not a rational number.
√3 is an irrational number.
Now, let us assume (2/5)√3 be a rational number, ‘r’
So, (2/5)√3 = r
5r/2 = √3
We know that, ‘r’ is rational, ‘5r/2’ is rational, so ‘√3’ is also rational.
This contradicts the statement that √3 is irrational.
So, (2/5)√3 is irrational number.
Hence proved.
More Solutions:
- Insert a rational number between and 2/9 and 3/8.
- Insert two rational numbers between 1/3 and 1/4.
- Insert two rational numbers between – 1/3 and – 1/2.
- Insert three rational numbers between 1/3 and 4/5.
- Insert three rational numbers between 4 and 4.5.
- Find six rational numbers between 3 and 4.
- Find five rational numbers between 3/5 and 4/5.
- Find six rational numbers between 1/2 and 2/3.
- Prove that, √5 is an irrational number.