If x + 1/x = 2, prove that x2 + 1/x2 = x3 + 1/x3 = x4 + 1/x4.
Answer :
We know that
x2 + 1/x2 = (x + 1/x)² – 2
Substituting the values
x2 + 1/x2 = 22 – 2
So we get
x2 + 1/x2 = 4 – 2 = 2 …. (1)
x3 + 1/x3 = (x + 1/x)3 – 3 (x + 1/x)
Substituting the values
x3 + 1/x3 = 23 – 3 × 2
So we get
x3 + 1/x3 = 8 – 6 = 2 …… (2)
x4 + 1/x4 = (x2 + 1/x2)2 – 2
Substituting the values
x4 + 1/x4 = 22 – 2
So we get
x4 + 1/x4 = 4 – 2 = 2 …. (3)
From equation (1), (2) and (3)
x2 + 1/x2 = x3 + 1/x3 = x4 + 1/x4
Hence, it is proved.
More Solutions:
- If (x + 1/x)2 = 3, find x3 + 1/x3.
- If x = 5 – 2√6, find the value of √x + 1/√x.
- If a + b + c = 12 and ab + bc + ca = 22, find a2 + b2 + c2.
- If a + b + c = 12 and a2 + b2 + c2 = 100, find ab + bc + ca.
- If a2 + b2 + c2 = 125 and ab + bc + ca = 50, find a + b + c.
- If a2 + b2 + c2 = 125 and ab + bc + ca = 50, find a + b + c.
- Find the value of ab – bc – ca.
- If a – b = 7 and a2 + b2 = 85, then find the value of a3 – b3.
- Find the product of x and y.
- Find the sum of their cubes.