Prove that x2 + 1/x2 = x3 + 1/x3 = x4 + 1/x4.

If x + 1/x = 2, prove that x2 + 1/x2 = x3 + 1/x3 = x4 + 1/x4.

Answer :

We know that

x2 + 1/x2 = (x + 1/x)² – 2

Substituting the values

x2 + 1/x2 = 22 – 2

So we get

x2 + 1/x2 = 4 – 2 = 2 …. (1)

x3 + 1/x3 = (x + 1/x)3 – 3 (x + 1/x)

Substituting the values

x3 + 1/x3 = 23 – 3 × 2

So we get

x3 + 1/x3 = 8 – 6 = 2 …… (2)

x4 + 1/x4 = (x2 + 1/x2)2 – 2

Substituting the values

x4 + 1/x4 = 22 – 2

So we get

x4 + 1/x4 = 4 – 2 = 2 …. (3)

From equation (1), (2) and (3)

x2 + 1/x2 = x3 + 1/x3 = x4 + 1/x4

Hence, it is proved.

More Solutions:

Leave a Comment