If x = a cos θ + b sin θ and y = a sin θ – b cos θ, prove that x2 + y2 = a2 + b2.
Answer :
x = a cos θ + b sin θ …(1)
y = a sin θ – b cos θ …(2)
By squaring and adding both the equations
x2 + y2 = (a cos θ + b sin θ)2 + (a sin θ – b cos θ)2
(a + b)2 = a2 + b2 + 2ab and (a – b)2 = a2 + b2 – 2ab
= [(a cosθ)2 + (b sinθ)2 + 2 (a cosθ) (b sinθ)] + [(a sinθ)2 + (b cosθ)2 – 2 (a sinθ) (b cosθ)]
= a2 cos2θ + b2 sin2θ + 2 ab sinθ cosθ + a2 sin2θ + b2 cos2θ – 2 ab sinθ cosθ
= a2 cos2θ + b2 sin2θ + a2 sin2θ + b2 cos2θ
= a2 (cos2θ + sin2θ) + b2 (sin2θ + cos2θ)
Here sin2θ + cos2θ = 1
= a2 (1) + b2 (1)
= a2 + b2
Hence, x2 + y2 = a2 + b2.
More Solutions:
- Find the value of sin2 θ + cosec2 θ.
- Find the length of BD.
- Find the values of 7 sin 30° cos 60°
- Find the values of (sin245° + cos245°)/tan260°
- Find the values of (sin30°/cos245°) – 3tan30° + 5cos90°
- Prove That. cos2 30° + sin 30° + tan2 45° = 2 ¼
- If x = 30°, verify that tan 2x = 2tanx/ (1- tan2 x).
- Find the values of: Trigonometric Ratios
- If θ = 30°, verify that
- Find the ratio 2 sin 0: sin 2 0.