Prove the following: cos θ tan θ = sin θ

Prove the following:

(i) cos θ tan θ = sin θ

(ii) sin θ cot θ = cos θ

(iii) sin2 θ/ cos θ + cos θ = 1/ cos θ.

Answer :

(i) cos θ tan θ = sin θ

LHS = cos θ tan θ

tan θ = sin θ/cos θ

= cos θ (sin θ/cos θ)

= 1× sin θ/1

= sin θ

= RHS

Hence, LHS = RHS.

(ii) sin θ cot θ = cos θ

LHS = sin θ cot θ

cot θ = cos θ/sin θ

= sin θ (cos θ/sin θ)

= 1× cos θ/1

= cos θ

= RHS

Hence, LHS = RHS.

(iii) sin2θ/cosθ + cosθ = 1/cosθ

LHS = sin2θ/cosθ + cosθ/1

Taking LCM

= (sin2θ + cos2θ)/cosθ

sin2θ + cos2θ = 1

= 1/cos θ

= RHS

Hence,

LHS = RHS.

More Solutions:

Leave a Comment