(i) sec 70° sin 20° – cos 20° cosec 70° = 0
(ii) sin2 20° + sin2 70° – tan2 45° = 0.
Answer :
(i) sec 70° sin 20° – cos 20° cosec 70° = 0
LHS = sec 70° sin 20° – cos 20° cosec 70°
= sin 20°/cos 70° – cos 20°/sin 70°
= sin 20°/cos (90° – 20°) – cos 20°/sin (90° – 20°)
= sin 20°/sin 20° – cos 20°/cos 20°
= 1 – 1
= 0
= RHS
(ii) sin2 20° + sin2 70° – tan2 45° = 0
LHS = sin2 20° + sin2 70° – tan2 45°
= sin2 20° + sin2 (90° – 20°) – tan2 45°
= sin2 20° + cos2 20° – tan2 45°
sin2 θ + cos2 θ = 1 and tan 45° = 1
= 1 – 1
= 0
= RHS
More Solutions:
- Prove the following: (sin A + cos A)2 + (sin A – cos A)2 = 2
- Simplify
- Find the value of sin2 θ + cosec2 θ.
- Prove that x2 + y2 = a2 + b2.
- Calculate all the six t-ratios for both acute………
- Find the values of: sin ∠ABC
- Find tanθ – cotθ in terms of p and q.
- Given 4 sin θ = 3 cos θ, find the values of:
- Prove that 3 sin 0 – 4 sin3 0 = 1.
- If (sec θ – tan θ)/ (sec θ + tan θ) = ¼, find sin θ.