By means of an example, show that sin (A + B) ≠ sin A + sin B.
Answer :
A = 30° and B = 60°
LHS = sin (A + B)
= sin (30° + 60°)
= sin 90°
= 1
RHS = sin A + sin B
= sin 30° + sin 60°
= ½ + √3/2
= (1 + √3)/2
Hence, LHS ≠ RHS i.e. sin (A + B) ≠ sin A + sin B.
More Solutions:
- If sin x + cos y = 1, x = 30°
- Find the values of A and B.
- Find the lengths of the diagonals of the rhombus.
- Find the lengths of the sides BC and AB.
- Find the distance of the man from the building.
- Find the length of the altitude AD.
- Cos 18°/sin 72°
- cot 40°/tan 50° – ½ (cos 35°/sin 55°)
- sin 62° – cos 28°
- cos2 26° + cos 64° sin 26° + tan 36°/ cot 54°