(i) sin 63° cos 27° + cos 63° sin 27° = 1
(ii) sec 31° sin 59° + cos 31° cosec 59° = 2.
Answer :
(i) sin 63° cos 27° + cos 63° sin 27° = 1
LHS = sin 63° cos 27° + cos 63° sin 27°
= sin 63° cos (90° – 63°) + cos 63° sin (90° – 63°)
= sin 63° sin 63° + cos 63° cos 63°
sin2 θ + cos2 θ = 1
= sin2 63° + cos2 63°
= 1
(ii) sec 31° sin 59° + cos 31° cosec 59° = 2
LHS = sec 31° sin 59° + cos 31° cosec 59°
= 1/cos 31° × sin 59° + (cos 31° × 1/sin 59°)
= sin 59°/cos (90° – 59°) + cos 31°/sin (90° – 31°)
= sin 59°/sin 59° + cos 31°/cos 31°
= 1 + 1
= 2
= RHS
More Solutions:
- Prove the following: (sin A + cos A)2 + (sin A – cos A)2 = 2
- Simplify
- Find the value of sin2 θ + cosec2 θ.
- Prove that x2 + y2 = a2 + b2.
- Calculate all the six t-ratios for both acute………
- Find the values of: sin ∠ABC
- Find tanθ – cotθ in terms of p and q.
- Given 4 sin θ = 3 cos θ, find the values of:
- Prove that 3 sin 0 – 4 sin3 0 = 1.
- If (sec θ – tan θ)/ (sec θ + tan θ) = ¼, find sin θ.