(i) sin2 28° – cos2 62° = 0
(ii) cos2 25° + cos2 65° = 1
(iii) cosec2 67° – tan2 23° = 1
(iv) sec2 22° – cot2 68° = 1.
Answer:
(i) sin2 28° – cos2 62° = 0
LHS = sin2 28° – cos2 62°
= sin2 28° – cos2 (90° – 28°)
= sin2 28° – sin2 28°
= 0
= RHS
(ii) cos2 25° + cos2 65° = 1
LHS = cos2 25° + cos2 65°
= cos2 25° + cos2 (90° – 25°)
sin2 θ + cos2 θ = 1
= cos2 25° + sin2 25°
= 1
(iii) cosec2 67° – tan2 23° = 1
LHS = cosec2 67° – tan2 23°
= cosec2 67° – tan2 (90° – 67°)
cosec2 θ – cot2 θ = 1
= cosec2 67° – cot2 67°
= 1
(iv) sec2 22° – cot2 68° = 1
LHS = sec2 22° – cot2 68°
= sec2 22° – cot2 (90° – 22°)
sec2 θ – tan2 θ = 1
= sec2 22° – tan2 22°
= 1
More Solutions:
- Prove the following: (sin A + cos A)2 + (sin A – cos A)2 = 2
- Simplify
- Find the value of sin2 θ + cosec2 θ.
- Prove that x2 + y2 = a2 + b2.
- Calculate all the six t-ratios for both acute………
- Find the values of: sin ∠ABC
- Find tanθ – cotθ in terms of p and q.
- Given 4 sin θ = 3 cos θ, find the values of:
- Prove that 3 sin 0 – 4 sin3 0 = 1.
- If (sec θ – tan θ)/ (sec θ + tan θ) = ¼, find sin θ.