Find the values of:
(i) sin2 60° – cos2 45° + 3tan2 30°
(ii)……………..
(iii) sec 30° tan 60° + sin 45° cosec 45° + cos 30° cot 60°
Answer :
(i) sin2 60° – cos2 45° + 3tan2 30°
Therefore, sin2 60° – cos2 45° + 3tan2 30° = 1¼
(iii) sec 30° tan 60° + sin 45° cosec 45° + cos 30° cot 60°
= 2 + 1 + ½ = 3 + ½ = (6 + 1)/2
= 7/2 = 3½
Thus,
sec 30° tan 60° + sin 45° cosec 45° + cos 30° cot 60° = 3½
More Solutions:
- Taking A = 30°, verify that
- If A = 45° and B = 30°
- Taking A = 60° and B = 30°, verify that
- Find the value of sin θ + √3 cos θ – 2 tan2 θ.
- Solve the following equations for θ:
- If tan (A + B) = √3 and tan (A – B) = 1
- Without using trigonometrical tables.
- Prove that:
- Solve the following equations:
- Find the value of θ if