is equal to
(a) 2 sin2 θ
(b) 2 cos2 θ
(c) sin2 θ
(d) cos2 θ
Solution:
= (c)
(cos θ + sin θ)2 + (cos θ – sin θ)2 is equal to
(a) – 2
(b) 0
(c) 1
(d) 2
Solution:
(cos θ + sin θ)2 + (cos θ – sin θ)2
= cos2 θ + sin2 θ + 2 sin θ cos θ + cos2 θ + sin2 θ – 2 sin θ cos θ
= 2(sin2 θ + cos2 θ)
= 2 × 1 = 2 (d)
(∵ sin2 θ + cos2 θ = 1)
More Solutions:
- Solve: sin2 θ + cos4 θ = cos2 θ + sin4 θ
- Solve: sec4 A (1 – sin4 A) – 2 tan2 A = 1
- Solve: (sec A – tan A)2 (1 + sin A) = 1 – sin A.
- Solve: (sec A – cosec A) (1 + tan A + cot A) = tan A sec A – cot A cosec A
- Solve: (sinA + cosA)2 + (sinA – cosA)2/sin2A – cos2A.
- Solve: 2 (sin6 θ + cos6 θ) – 3 (sin4 θ + cos4 θ) + 1 = θ