Solve the following trigonometric:

(i) \frac { 1+cos\theta -{ sin }^{ 2 }\theta }{ sin\theta (1+cos\theta ) } =cot\theta
(ii) \frac { { tan }^{ 3 }\theta -1 }{ tan\theta -1 } ={ sec }^{ 2 }\theta +tan\theta

Solution:

(i) \frac { 1+cos\theta -{ sin }^{ 2 }\theta }{ sin\theta (1+cos\theta ) } =cot\theta
L.H.S = \frac { 1+cos\theta -{ sin }^{ 2 }\theta }{ sin\theta (1+cos\theta ) }

ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 18 Trigonometric Identities Ex 18 Q21.1

(i) \frac { 1+cosecA }{ cosecA } =\frac { { cos }^{ 2 }A }{ 1-sinA }
(ii) \sqrt { \frac { 1-cosA }{ 1+cosA } } =\frac { sinA }{ 1+cosA }

Solution:

(i) \frac { 1+cosecA }{ cosecA } =\frac { { cos }^{ 2 }A }{ 1-sinA }
L.H.S = \frac { 1+cosecA }{ cosecA }

ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 18 Trigonometric Identities Ex 18 Q22.1

ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 18 Trigonometric Identities Ex 18 Q22.2

More Solutions:

Leave a Comment