Taking A = 30°, verify that

Taking A = 30°, verify that

(i) cos4 A – sin4 A = cos 2A
(ii) 4cos A cos (60° – A) cos (60° + A) = cos 3 A.

Answer :

(i) cos4 A – sin4 A = cos 2A

Let’s take A = 30°

so,

we have

L.H.S.= cos4 A – sin4 A = cos4 30° – sin4 30°

Trigonometric Ratios of Standard Angles Class 9 ICSE ML Aggarwal img 32

R.H.S. = cos 2A = cos 2(30o) = ½
Therefore, L.H.S. = R.H.S. hence verified.

(ii) 4 cos A cos (60°- A) cos (60° + A) = cos 3 A

Let’s take A = 30°

L.H.S. = 4 cos A cos (60° – A) cos (60° + A)

= 4 cos 30° cos (60° – 30°) cos (60° + 30°)

= 4 cos 30° cos 30° cos 90°

= 4 × (√3/2) × (√3/2) × 0

= 0

R.H.S. = cos 3A

= cos (3 × 30°) = cos 90° = 0

Therefore, L.H.S. = R.H.S.

Hence proofed

More Solutions:

Leave a Comment