The angle of elevation of a pillar from a point A on the ground is 45° and from a point B diametrically opposite to A and on the other side of the pillar is 60°. Find the height of the pillar, given that the distance between A and B is 15 m.
Solution:
Let CD be the pillar and let CD = x
Angles of elevation of points A and B are 45° and 60° respectively.
From two points A and B on the same side of a building, the angles of elevation of the top of the building are 30° and 60° respectively. If the height of the building is 10 m, find the distance between A and B correct to two decimal places
Solution:
In ∆DBC, tan 60° =
⇒ √3=
⇒ BC =
∆DBC ,tan 30° =
More Solutions: