The circumference of a circle must be
(a) a positive real number
(b) a whole number
(c) a natural number
(d) an integer
Solution:
a positive real number (a)
More Solutions:
- ABCD and AEFG are two parallelograms.
- prove that area of ∆ BCE
- Prove that area of rectangle ∆BCD
- Prove that area of ∆CEF = 38
- Prove that area of ∆ABE=area of ∆ACF.
- Calculate the lengths of the sides of the parallelogram.
- Find the area of || gm EBCF.
- Prove that: area of ∆ABC= area of ∆EBD.
- The correct statement is
- The ratio of their areas is