If (sec2 59° – cot2 31°) – sin 90° + 3tan2 56° tan2 34° = , then find the value of x.
Solution:
Given
(sec2 59° – cot2 31°) – sin 90° + 3tan2 56° tan2 34° =
(i)
(ii)
Solution:
(i)
L.H.S =
More Solutions:
- Solve: sin2 θ + cos4 θ = cos2 θ + sin4 θ
- Solve: sec4 A (1 – sin4 A) – 2 tan2 A = 1
- Solve: (sec A – tan A)2 (1 + sin A) = 1 – sin A.
- Solve: (sec A – cosec A) (1 + tan A + cot A) = tan A sec A – cot A cosec A
- Solve: (sinA + cosA)2 + (sinA – cosA)2/sin2A – cos2A.
- Solve: 2 (sin6 θ + cos6 θ) – 3 (sin4 θ + cos4 θ) + 1 = θ