Then find the value of x.

If \\ \frac { 4 }{ 3 } (sec2 59° – cot2 31°) – \\ \frac { 2 }{ 2 } sin 90° + 3tan2 56° tan2 34° = \\ \frac { x }{ 2 } , then find the value of x.

Solution:

Given
\\ \frac { 4 }{ 3 } (sec2 59° – cot2 31°) – \\ \frac { 2 }{ 2 } sin 90° + 3tan2 56° tan2 34° = \\ \frac { x }{ 2 }

ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 18 Trigonometric Identities Chapter Test Q3.1

ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 18 Trigonometric Identities Chapter Test Q3.2

(i) \frac { cosA }{ 1-sinA } +\frac { cosA }{ 1+sinA } =2secA
(ii) \frac { cosA }{ cosecA+1 } +\frac { cosA }{ cosecA-1 } =2tanA

Solution:

(i) \frac { cosA }{ 1-sinA } +\frac { cosA }{ 1+sinA } =2secA
L.H.S = \frac { cosA }{ 1-sinA } +\frac { cosA }{ 1+sinA }

ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 18 Trigonometric Identities Chapter Test Q4.1

ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 18 Trigonometric Identities Chapter Test Q4.2

More Solutions:

Leave a Comment