Then the matrix A is equal to.

If B = \begin{bmatrix} -1 & 5 \\ 0 & 3 \end{bmatrix} and A – 2B = \begin{bmatrix} 0 & 4 \\ -7 & 5 \end{bmatrix}
then the matrix A is equal to
(a) \begin{bmatrix} 2 & 14 \\ -7 & 11 \end{bmatrix}
(b) \begin{bmatrix} -2 & 14 \\ 7 & 11 \end{bmatrix}
(c) \begin{bmatrix} 2 & -14 \\ 7 & 11 \end{bmatrix}
(d) \begin{bmatrix} -2 & 14 \\ -7 & 11 \end{bmatrix}

Solution:

ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 8 Matrices MCQS

If A + B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} and A – 2B = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}
then A is equal to
(a) \frac { 1 }{ 3 } \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}
(b) \frac { 1 }{ 3 } \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}
(c) \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}
(d) \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}

Solution:

ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 8 Matrices MCQS

More Solutions:

Leave a Comment