Then the solution set of the inequation.

If x ∈ { – 3, – 1, 0, 1, 3, 5}, then the solution set of the inequation 3x – 2 ≤ 8 is
(a) { – 3, – 1, 1, 3}
(b) { – 3, – 1, 0, 1, 3}
(c) { – 3, – 2, – 1, 0, 1, 2, 3}
(d) { – 3, – 2, – 1, 0, 1, 2}

Solution:

x ∈ { -3, -1, 0, 1, 3, 5}
3x – 2 ≤ 8
⇒ 3x ≤ 8 + 2
⇒ 3x ≤ 10
⇒ x ≤ \\ \frac { 10 }{ 3 }
⇒ x < 3 \frac { 1 }{ 3 }
Solution set = { -3, -1, 0, 1, 3} (b)

If x ∈ W, then the solution set of the inequation 3x + 11 ≥ x + 8 is
(a) { – 2, – 1, 0, 1, 2, …}
(b) { – 1, 0, 1, 2, …}
(c) {0, 1, 2, 3, …}
(d) {x : x∈R,x≥- \frac { 3 }{ 2 } }

Solution:

x ∈ W
3x + 11 ≥ x + 8
⇒ 3x – x ≥ 8 – 11
ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 4 Linear Inequations MCQS Q2.1

Leave a Comment