Worksheet on Factoring the Differences of Two Squares | Factoring Difference of Squares Worksheet

Are you looking for guidance on the concept of Differences of Two Squares Factorization? Then, check out the Worksheet on Factoring the Differences of Two Squares now. Practice as much as you can using our Factoring Difference of Squares Worksheet and get a good grip on the topic. Solve all problems available on the Difference Between Two Squares Worksheet and test your subject knowledge.

Improve your problem-solving skills by solving the Differences of Two Squares Factorization Worksheet frequently and assess your preparation standards. All the questions are framed by the subject experts to help the students to have perfect knowledge of the concept.

How to Find Factorization of the Differences of Two Squares?

Factorize given algebraic expression using the following identity a2 – b2 = (a + b) (a – b).

1. Factorize the following by taking the difference of squares

(i) a2 – 9
(ii) x2 – 1
(iii) 49 – a2
(iv) 4a2 – 25
(v) x2y2 – 16
(vi) m4 – n4

Solution:

(i) Given expression is a2 – 9
Rewrite the given expression in the form of a2 – b2.
(a)2 – (3)2
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = a and b = 3
[a + 3] [a – 3]

The final answer is [a + 3] [a – 3]

(ii) Given expression is x2 – 1
Rewrite the given expression in the form of a2 – b2.
(x)2 – (1)2
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = x and b = 1
[x + 1] [x – 1]

The final answer is [x + 1] [x – 1]

(iii) Given expression is 49 – a2
Rewrite the given expression in the form of a2 – b2.
(7)2 – (a)2
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = 7 and b = a
[7 + a] [7 – a]

The final answer is [7 + a] [7 – a]

(iv) Given expression is 4a2 – 25
Rewrite the given expression in the form of a2 – b2.
(2a)2 – (5)2
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = 2a and b = 5
[2a + 5] [2a – 5]

The final answer is [2a + 5] [2a – 5]

(v) Given expression is x2y2 – 16
Rewrite the given expression in the form of a2 – b2.
(xy)2 – (4)2
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = xy and b = 4
[xy + 4] [xy – 4]

The final answer is [xy + 4] [xy – 4]

(vi) Given expression is m4 – n4
Rewrite the given expression in the form of a2 – b2.
(m2)2 – (n2)2
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = m2 and b = n2
[m2 + n2] [m2 – n2]
From the above equation, [m2 – n2] is in the form of a2 – b2.
[(m)2 – (n)2]
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = m and b = n
[m + n] [m – n]
Now, [m2 + n2] [m2 – n2]
[m2 + n2] [m + n] [m – n]

The final answer is [m2 + n2] [m + n] [m – n]


2. Factoring by the Difference of Two Perfect Squares

(i) 144x2 – 169y2
(ii) 1 – 0.09x2
(iii) 16m2 – 121
(iv) – 64x2 + (9/25) y2
(v) m4 – 256
(vi) (a + b)4 – c4

Solution:

(i) Given expression is 144x2 – 169y2
Rewrite the given expression in the form of a2 – b2.
(12x)2 – (13y)2
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = 12x and b = 13y
[12x + 13y] [12x – 13y]

The final answer is [12x + 13y] [12x – 13y]

(ii) Given expression is 1 – 0.09x2
Rewrite the given expression in the form of a2 – b2.
(1)2 – (0.3x)2
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = 1 and b = 0.3x
[1 + 0.3x] [1 – 0.3x]

The final answer is [1 + 0.3x] [1 – 0.3x]

(iii) Given expression is 16m2 – 121
Rewrite the given expression in the form of a2 – b2.
(4m)2 – (11)2
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = 4m and b = 11
[4m + 11] [4m – 11]

The final answer is [4m + 11] [4m – 11]

(iv) Given expression is – 64x2 + (9/25) y2
Rewrite the given expression in the form of a2 – b2.
(9/25) y2 – 64x2 = (3/5y)2 – (8x)2
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = 3/5y and b = 8x
[3/5y + 8x] [3/5y – 8x]

The final answer is [3/5y + 8x] [3/5y – 8x]

(v) Given expression is m4 – 256
Rewrite the given expression in the form of a2 – b2.
(m2)2 – ( (4)2)2
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = m2 and b = (4)2
[m2 + (4)2] [m2 – (4)2]
[m2 + 16] [(m)2 – (4)2]
From the above equation, [(m)2 – (4)2] is in the form of a2 – b2.
[(m)2 – (4)2]
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = m and b = (4)
[m + (4)] [m – (4)]
Now, [m2 + 16] [(m)2 – (4)2]
[m2 + 16] [m + (4)] [m – (4)]
[m2 + 16] [m + 4] [m – 4]

The final answer is [m2 + 16] [m + 4] [m – 4]

(vi) Given expression is (a + b)4 – c4
Rewrite the given expression in the form of a2 – b2.
((a + b)2)2 – ( (c)2)2
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = (a + b)2 and b = ((c)2)2
[(a + b)2 + (c)2] [(a + b)2 – (c)2]
[(a + b)2 + (c)2] [(a + b)2 – (c)2]
From the above equation, [(a + b)2 – (c)2] is in the form of a2 – b2.
[(a + b)2 – (c)2]
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = a + b and b = (c)
[a+ b + c] [a + b – c]
Now, [(a + b)2 + (c)2] [(a + b)2 – (c)2]
[(a + b)2 + (c)2] [a+ b + c] [a + b – c]

The final answer is [(a + b)2 + (c)2] [a+ b + c] [a + b – c]


3. Factorize using the formula of differences of two squares

(i) 36x2 – y2
(ii) a2b2 – 16
(iii) 9x4y4 – 25m4n4
(iv) a4 – 256
(v) 81m2 – 49n2
(vi) a2 – (b – c)2

Solution:

(i) Given expression is 36x2 – y2
Rewrite the given expression in the form of a2 – b2.
(6x)2 – (y)2
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = 6x and b = (y)
[6x + y] [6x – y]

The final answer is [6x + y] [6x – y]

(ii) Given expression is a2b2 – 16
Rewrite the given expression in the form of a2 – b2.
(ab)2 – (4)2
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = ab and b = 4
[ab + 4] [ab – 4]

The final answer is [ab + 4] [ab – 4]

(iii) Given expression is 9x4y4 – 25m4n4
Rewrite the given expression in the form of a2 – b2.
(3x2y2)2 – (5m2n2)2
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = 3x2y2 and b = 5m2n2
[3x2y2 + 5m2n2] [3x2y2 – 5m2n2]

The final answer is [3x2y2 + 5m2n2] [3x2y2 – 5m2n2]

(iv) Given expression is a4 – 256
Rewrite the given expression in the form of a2 – b2.
(a2)2 – ((4)2)2
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = a2 and b = (4)2
[a2 + (4)2] [a2 – (4)2]
[a2 + 16] [a2 – (4)2]
From the above equation, [a2 – (4)2] is in the form of a2 – b2.
[(a)2 – (4)2]
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = a and b = 4
[a + 4] [a – 4]
Now, [a2 + 16] [a2 – (4)2]
[a2 + 16] [a + 4] [a – 4]

The final answer is [a2 + 16] [a + 4] [a – 4]

(v) Given expression is 81m2 – 49n2
Rewrite the given expression in the form of a2 – b2.
(9m)2 – (7n)2
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = 9m and b = 7n
[9m + 7n] [9m – 7n]

The final answer is [9m + 7n] [9m – 7n]

(vi) Given expression is a2 – (b – c)2
Rewrite the given expression in the form of a2 – b2.
(a)2 – (b – c)2
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = a and b = b – c
[a + b – c] [a – (b – c)]
[a + b – c] [a – b + c]

The final answer is [a + b – c] [a – b + c]


4. Factor the difference of two perfect squares

(i) 16a2 – (3b + 2y)2
(ii) (3m + 4n)2 – (4n + 5n)2
(iii) (a + b)2 – (a – b)2
(iv) 50x2 – 72y2
(v) x4 – (y + z)4
(vi) x2 – 1/169

Solution:

(i) Given expression is 16a2 – (3b + 2y)2
Rewrite the given expression in the form of a2 – b2.
(4a)2 – (3b + 2y)2
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = 4a and b = 3b + 2y
[4a + 3b + 2y] [4a – (3b + 2y)]
[4a + 3b + 2y] [4a – 3b – 2y]

The final answer is [4a + 3b + 2y] [4a – 3b – 2y]

(ii) Given expression is (3m + 4n)2 – (4n + 5n)2
Rewrite the given expression in the form of a2 – b2.
(3m + 4n)2 – (9n)2
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = 3m + 4n and b = 9n
[3m + 4n + 9n] [3m + 4n – 9n]
[3m + 13n] [3m – 5n]

The final answer is [3m + 13n] [3m – 5n]

(iii) Given expression is (a + b)2 – (a – b)2
Rewrite the given expression in the form of a2 – b2.
(a + b)2 – (a – b)2
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = a + b and b = a – b
[a + b + a – b] [a + b – (a – b)]
[2a] [a + b – a + b] = 2a (2b) = 4ab

The final answer is 4ab

(iv) Given expression is 50x2 – 72y2
Rewrite the given expression in the form of a2 – b2.
2[(5x)2 – (6y)2]
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = 5x and b = 6y
2{[5x + 6y] [5x – 6y]}

The final answer is 2{[5x + 6y] [5x – 6y]}

(v) Given expression is x4 – (y + z)4
Rewrite the given expression in the form of a2 – b2.
[(x2)2 – ((y + z)2)2]
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = x2 and b = (y + z)2
{[x2 + (y + z)2] [x2 – (y + z)2]}
{[x2 + y2 + z2+ 2yz] [x2 – (y + z)2]}
From the above equation, [x2 – (y + z)2] is in the form of a2 – b2.
[x2 – (y + z)2]
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = x and b = y + z
[x + y + z] [x – (y + z)] = [x + y + z] [x – y – z]
Now, {[x2 + y2 + z2+ 2yz] [x2 – (y + z)2]}
{[x2 + y2 + z2+ 2yz] [x + y + z] [x – y – z]}

The final answer is {[x2 + y2 + z2+ 2yz] [x + y + z] [x – y – z]}

(vi) Given expression is x2 – 1/169
Rewrite the given expression in the form of a2 – b2.
(x)2 – (1/13)2
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = x and b = 1/13
[x + 1/13] [x – 1/13]

The final answer is [x + 1/13] [x – 1/13]


5. Factor each expression as a difference between two squares

(i) 9 (a + b)2 – 4 (a – b)2
(ii) 16/49 – 25m2
(iii) 9ab2 – a3
(iv) 4 (3a + 1)2 – 9 (a – 2)2
(v) 1 – 121m2
(vi) 169x2 – 1

Solution:

(i) Given expression is9 (a + b)2 – 4 (a – b)2
Rewrite the given expression in the form of a2 – b2.
(a + b)2 – (2 (a – b))2
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = a + b and b = 2 (a – b)
[a + b + 2 (a – b)] [a + b – 2 (a – b)]
[a + b + 2a – 2b] [a + b – 2a + 2b]
[3a – b] [3b – a]

The final answer is [3a – b] [3b – a]

(ii) Given expression is 16/49 – 25m2
Rewrite the given expression in the form of a2 – b2.
(4/7)2 – (5m)2
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = 4/7 and b = 5m
[4/7 + 5m] [4/7 – 5m]

The final answer is [4/7 + 5m] [4/7 – 5m]

(iii) Given expression is 9ab2 – a3
Rewrite the given expression in the form of a2 – b2.
a[(3b)2 – (a)2]
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = 3b and b = a
a{[3b + a] [3b – a]}

The final answer is a{[3b + a] [3b – a]}

(iv) Given expression is 4 (3a + 1)2 – 9 (a – 2)2
Rewrite the given expression in the form of a2 – b2.
4 (9a2 + 1 + 6a) – 9 (a2 + 4 – 4a) = 36a2 + 4 + 24a – 9a2 – 36 + 36a = 27a2 + 60a – 32 = (9a – 4) (3a + 8)
Now, apply the formula of a2 – b2 = (a + b) (a – b),
(9a – 4) (3a + 8)

The final answer is (9a – 4) (3a + 8)

(v) Given expression is 1 – 121m2
Rewrite the given expression in the form of a2 – b2.
[(1)2 – (11m)2]
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = 1 and b = 11m
{[1 + 11m] [1 – 11m]}

The final answer is {[1 + 11m] [1 – 11m]}

(vi) Given expression is 169x2 – 1
Rewrite the given expression in the form of a2 – b2.
[(13x)2 – (1)2]
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = 13x and b = 1
{[13x + 1] [13x – 1]}

The final answer is {[13x + 1] [13x – 1]}


6. Factor using the identity

(i) 1 – (m + n)2
(ii) a2b2 – 25/c2
(iii) a12b4 – a4b12
(iv) 100 (m – n)2 – 121 (x + y)2
(v) 2a – 50a3
(vi) 25/a2 – (4a2)/9
(vii) a4 – 1/(b4)
(viii) 75a3b2 – 108ab4

Solution:

(i) Given expression is 1 – (m + n)2
Rewrite the given expression in the form of a2 – b2.
[(1)2 – (m + n)2]
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = 1 and b = m + n
{[1 + m + n] [1 – (m + n)]}
{[1 + m + n] [1 – m – n]}

The final answer is {[1 + m + n] [1 – m – n]}

(ii) Given expression is a2b2 – 25/c2
Rewrite the given expression in the form of a2 – b2.
[(ab)2 – (5/c)2]
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = ab and b = 5/c
{[ab + 5/c] [ab – (5/c)]}
{[ab + 5/c] [ab – 5/c]}

The final answer is {[ab + 5/c] [ab – 5/c]}

(iii) Given expression is a12b4 – a4b12
Rewrite the given expression in the form of a2 – b2.
[(a6b2)2 – (a2b6)2]
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = a6b2 and b = a2b6
{[a6b2 + a2b6] [a6b2 – a2b6]} = a2b2{[a4 + b4] a2b2[a4 – b4]} = a4b4 [a4 + b4] [a4 – b4]
From the above equation, [(a2)2 – (b2)2] is in the form of a2 – b2.
[(a2)2 – (b2)2]
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = a2 and b = b2
[a2 + b2] [a2 – b2
Now, a4b4 [a4 + b4] [a4 – b4]
a4b4 [a4 + b4] [a2 + b2] [a2 – b2]
From the above equation, [a2 – b2] is in the form of a2 – b2.
[a2 – b2]
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = a and b = b
[a + b] [a – b]
Now, a4b4 [a4 + b4] [a2 + b2] [a2 – b2]
a4b4 [a4 + b4] [a2 + b2] [a + b] [a – b]

The final answer is a4b4 [a4 + b4] [a2 + b2] [a + b] [a – b]

(iv) Given expression is 100 (m – n)2 – 121 (x + y)2
Rewrite the given expression in the form of a2 – b2.
[(10(m – n))2 – (11 (x + y))2]
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = 10(m – n) and b = 11 (x + y)
{[10(m – n) + 11 (x + y)] [10(m – n) – 11 (x + y)]}
{[10m – 10n + 11x + 11y] [10m – 10n – 11x – 11y]}

The final answer is {[10m – 10n + 11x + 11y] [10m – 10n – 11x – 11y]}

(v) Given expression is 2a – 50a3
Rewrite the given expression in the form of a2 – b2.
2a[(1)2 – (5a)2]
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = 1 and b = 5a
2a {[1 + 5a] [1 – 5a]}

The final answer is 2a {[1 + 5a] [1 – 5a]}

(vi) Given expression is 25/a2 – (4a2)/9
Rewrite the given expression in the form of a2 – b2.
[(5/a)2 – (2a/3)2]
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = 5/a and b = 2a/3
{[5/a + 2a/3] [5/a – 2a/3]}

The final answer is {[5/a + 2a/3] [5/a – 2a/3]}

(vii) Given expression is a4 – 1/(b4)
Rewrite the given expression in the form of a2 – b2.
[(a2)2 – (1/b2)2]
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = a2 and b = 1/b2
{[a2 + 1/b2] [a2 – 1/b2]}
From the above equation, [a2 – 1/b2] is in the form of a2 – b2.
[a2 – (1/b)2]
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = a and b = 1/b
[a + 1/b] [a – 1/b]
Now, {[a2 + 1/b2] [a2 – 1/b2]}
{[a2 + 1/b2] [a + 1/b] [a – 1/b] }

The final answer is {[a2 + 1/b2] [a + 1/b] [a – 1/b]}

(vi) Given expression is 75a3b2 – 108ab4
Rewrite the given expression in the form of a2 – b2.
3ab2[(5a)2 – (6b)2]
Now, apply the formula of a2 – b2 = (a + b) (a – b), where a = 5a and b = 6b
3ab2{[5a + 6b] [5a – 6b]}

The final answer is 3ab2{[5a + 6b] [5a – 6b]}


Leave a Comment