**Solution:**

We know that

√2 = √2

3.5 = √12.25

√10 = √10

Writing the above numbers in descending order

√18.75, √12.25, √10, √2, – √12.5

So we get

5/2 √3, 3.5, √10, √2, -5/√2

#### Find a rational number and an irrational number between √3 and √5.

**Solution:**

Let (√3)^{2} = 3 and (√5)^{2} = 5

(i) There exists a rational number 4 which is the perfect square of a rational number 2.

(ii) There can be much more rational numbers which are perfect squares.

(iii) We know that

One irrational number between √3 and √5 = ½ (√3 + √5) = (√3 + √5)/ 2

**More Solutions:**

- Choose the correct statement:
- Between two rational numbers:
- The product of any two irrational numbers is:
- Which of the following is an irrational number?
- The following is an irrational number?
- A rational number between √2 and √3 is:
- The decimal expansion of the rational number:
- 2√3 + √3 is equal to:
- The number (2 – √3)2 is: